1,029 research outputs found

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    R^2 Corrections to Asymptotically Lifshitz Spacetimes

    Full text link
    We study R2R^{2} corrections to five-dimensional asymptotically Lifshitz spacetimes by adding Gauss-Bonnet terms in the effective action. For the zero-temperature backgrounds we obtain exact solutions in both pure Gauss-Bonnet gravity and Gauss-Bonnet gravity with non-trivial matter. The dynamical exponent undergoes finite renormalization in the latter case. For the finite-temperature backgrounds we obtain black brane solutions perturbatively and calculate the ratio of shear viscosity to entropy density η/s\eta/s. The KSS bound is still violated but unlike the relativistic counterparts, the causality of the boundary field theory cannot be taken as a constraint.Comment: 24 pages, Latex, typos fixed, accepted by JHE

    Higgsless Theory of Electroweak Symmetry Breaking from Warped Space

    Full text link
    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data.Comment: 17 pages, Latex; important correction in discussions on effects from brane terms, reference adde

    The Many Electron Ground State of the Adiabatic Holstein Model in Two and Three Dimensions

    Full text link
    We present the complete ground state phase diagram of the Holstein model in two and three dimension considering the phonon variables to be classical. We first establish the overall structure of the phase diagram by using exact diagonalisation based Monte Carlo (ED-MC) on small lattices and then use a new ``travelling cluster'' approximation (TCA) for annealing the phonon degrees of freedom on large lattices. The phases that emerge include a Fermi liquid (FL), with no lattice distortions, an insulating polaron liquid (PL) at strong coupling, and a charge ordered insulating (COI) phase around half- filling. The COI phase is separated from the Fermi liquid by a regime of phase coexistence whose width grows with increasing electron-phonon coupling. We provide results on the electronic density of states, the COI order parameter, and the spatial organisation of polaronic states, for arbitrary density and electron-phonon coupling. The results highlight the crucial role of spatial correlations in this strong coupling problem.Comment: Final versio

    Vacuum ultraviolet photoabsorption spectra of nitrile ices for their identification on Pluto

    Get PDF
    Icy bodies, such as Pluto, are known to harbor simple and complex molecules. The recent New Horizons flyby of Pluto has revealed a complex surface composed of bright and dark ice surfaces, indicating a rich chemistry based on nitrogen (N2), methane (CH4), and carbon monoxide (CO). Nitrile (CN) containing molecules such as acetonitrile (CH3CN), propionitrile (CH3CH2CN), butyronitrile (CH3CH2CH2CN), and isobutyronitrile ((CH3)2CHCN) are some of the nitrile molecules that are known to be synthesized by radiative processing of such simple ices. Through the provision of a spectral atlas for such compounds we propose that such nitriles may be identified from the ALICE payload on board New Horizons</i

    RG flow of transport quantities

    Full text link
    The RG flow equation of various transport quantities are studied in arbitrary spacetime dimensions, in the fixed as well as fluctuating background geometry both for the Maxwellian and DBI type of actions. The regularity condition on the flow equation of the conductivity at the horizon for the DBI action reproduces naturally the leading order result of {\it Hartnoll et al.}, [{\it JHEP}, {\bf 04}, 120 (2010)]. Motivated by the result of {\it van der Marel et al.}, [{\it science}, {\bf 425}, 271 (2003], we studied, analytically, the conductivity versus frequency plane by dividing it into three distinct parts: ωT\omega T and ω>>T\omega >> T. In order to compare, we choose 3+1 dimensional bulk spacetime for the computation of the conductivity. In the ω<T\omega <T range, the conductivity does not show up the Drude like form in any spacetime dimensions. In the ω>T\omega > T range and staying away from the horizon, for the DBI action with unit dynamical exponent, non-zero magnetic field and charge density, the conductivity goes as ω−2/3\omega^{-2/3}, whereas the phase of the conductivity, goes as, ArcTan(Imσxx/Reσxx)=π/6ArcTan(Im\sigma^{xx}/Re\sigma^{xx})=\pi/6 and ArcTan(Imσxy/Reσxy)=−π/3ArcTan(Im\sigma^{xy}/Re\sigma^{xy})=-\pi/3. There exists a universal quantity at the horizon that is the phase angle of conductivity, which either vanishes or an integral multiple of π\pi. Furthermore, we calculate the temperature dependence to the thermoelectric and the thermal conductivity at the horizon. The charge diffusion constant for the DBI action is studied.Comment: 1+68 pages, 12 figures and 4 appendices; V2: The charge diffusion constant is calculated for arbitrary spacetime dimensions and related references added; v3: Connection with the RG flow of 1010.4036 is made; v4: Several corrections, typos fixed and a ref. adde

    Non-relativistic CFT and Semi-classical Strings

    Full text link
    We study different features of 3D non-relativistic CFT using gravity description. As the corresponding gravity solution can be embedded into the type IIB string theory, we study semi-classical closed/open strings in this background. In particular we consider folded rotating and circular pulsating closed strings where we find the anomalous dimension of the dual operators as a function of their quantum numbers. We also consider moving open strings in this background which can be used to compute the drag force. In particular we find that for slowly moving particles, the energy is lost exponentially and the characteristic time is given in terms of the temperature, while for fast moving particles the energy loss goes as inverse of the time and the characteristic time is independent of the temperature.Comment: 20 pages, Latex file; V2: typos corrected, ref. adde

    A Comment on the Zero Temperature Chiral Phase Transition in SU(N)SU(N) Gauge Theories

    Full text link
    Recently Appelquist, Terning, and Wijewardhana investigated the zero temperature chiral phase transition in SU(N) gauge theory as the number of fermions N_f is varied. They argued that there is a critical number of fermions N^c_f, above which there is no chiral symmetry breaking and below which chiral symmetry breaking and confinement set in. They further argued that that the transition is not second order even though the order parameter for chiral symmetry breaking vanishes continuously as N_f approaches N^c_f on the broken side. In this note I propose a simple physical picture for the spectrum of states as N_f approaches N^c_f from below (i.e. on the broken side) and argue that this picture predicts very different and non-universal behavior than is the case in an ordinary second order phase transition. In this way the transition can be continuous without behaving conventionally. I further argue that this feature results from the (presumed) existence of an infrared Banks-Zaks fixed point of the gauge coupling in the neighborhood of the chiral transition and therefore depends on the long-distance nature of the non-abelian gauge force.Comment: 7 pages, 2 figure

    The structure of electroweak corrections due to extended gauge symmetries

    Get PDF
    This paper studies models with extended electroweak gauge sectors of the form SU(2) x SU(2) x U(1) x [SU(2) or U(1)]. We establish the general behavior of corrections to precision electroweak observables in this class of theories and connect our results to previous work on specific models whose electroweak sectors are special cases of our extended group.Comment: 18 pages, 2 figures; added a referenc
    • 

    corecore